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ON YOKO'S CONJECTURE 

MING-YAO ZHANG 

ABSTRACT. In this paper we obtain a lower bound for those discriminants of 
real quadratic fields Q(VDP) with D = m2 + 4 and h(D) = 1 . 

In 1986 Yokoi [11] posed the following conjecture. 

Conjecture. Let D = m2 +4 be a square-free rational integer and m be a positive 
integer. Then there exist exactly six real quadraticfields Q(Vih) with h(D) = 1, 
i.e., (D, m) = (5,l), (13, 3), (29, 5), (53, 7), (173, 13), (293, 17). 

In 1987, by using Tatuzawa [10], Huyn Kwang Kim et al. [2] proved that 
there exists at most one discriminant D = m2 + 4 > e16 with h(D) = 1. 
Later, Mollin and Williams [5] generalized this result to arbitrary ERD types, 
i.e., those radicands of the form D = 12 + r where r 141. Furthermore, they 
extended their techniques in [6], where they were able to determine (with the 
only possible exception ruled out by GRH) all real quadratic fields with class 
number one and continued fraction period length of the principal class less than 
25. 

In this paper, by combining the ideas of Stark [9] and Hecke [1], we obtain 
the following lower bound. 

Theorem. Let m > 17 be a positive integer and D = m2 + 4 be a square-free 
rational integer. If h(D) = 1, then we have D > exp(3.7 x 108). 

For proving the result in the case 293 < D < 1013, we use a computer and 
the following lemma, which is an immediate consequence of Theorem 2.1 in 
Mollin and Williams [4]. 

Lemma 1 (see also [3]). Let D - m2 + 4 be a square-free integer and m be a 
positive integer. Then the following four statements are equivalent: 

(i) h(D)= 1. 
(ii) fD(X) = X2 X + (D - 1)/4 0 0 (mod p) for all integers x and primes 

p such that O<x<p < D-1/2. 
(iii) fD(x) is prime for all integers x with 1 <x < vD- 1/2. 
(iV) ( D I for all primes p < vDb/2 . 
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Corollary 1. If D = m2 + 4 is square-free and D is composite, then we have 
h(D) > 1. 
Proof. Case I: D has at least three different odd prime divisors. Let p denote 
thesmallestdivisor. Thenwehave p < D-3 < 1/2. Taking x= (p+l)/2, 
we obtain fD(211) = 0= (mod p), which contradicts (ii) of Lemma 1. 

Case II: D = pq (p < q, p and q are odd primes). We can easily show 
that p < D- -1. Taking x = (p + 1)/2 leads to fD(1) = p(q - p)/4, 
which cannot be a prime. By (iii) of Lemma 1, we also have h(D) > 1. a 

Corollary 2. If D - m2 + 4 is square-free and m is composite, then we have 
h(D)> 1. 
Proof. Taking x (m - 1)/2 in (iii) of Lemma 1 leads to the result immedi- 
ately. a 

We now turn to the proof in the case 293 < D < 1013. 

Lemma 2. Let D = m2 + 4 be a square-free integer and m be an odd prime 
such that 293 < D < 1013 . Then we have h(D) > 1. 
Sketch of the Proof. We have m < 106.5 for D < 1013. Let k be a natural 
number to be chosen later. Let S be the set of the first k primes qj with 
q, = 5. For such qj E S, tabulate all those integers mij satisfying 

O < mij < qj - 1 B 

where (*) denotes the Legendre symbol. This can be easily done by using the 
tables from p. 437 to p. 444 of Riesel [8]. 

Let mo be an integer such that 17 < mO < 106.5. If there exist a prime 
qj E S and some mij such that 

qj < +3/2, mO - mij (mod qj), 

then, by (iv) of Lemma 1, we have h(Do) > 1 for Do = mO + 4. Thus, such an 
mo could be eliminated. It can be easily seen that approximately half of the m's 
are eliminated for each qj . To insure success, we take k = 100 instead of the 
least k = 22 satisfying 2k > 106.5 . The corresponding mij to qj > 101 must 
be calculated by trial. We use a personal computer to sieve out as many m with 
17 < m < 106-5 as possible. The computation shows that for 17 < m < 106.5 

and prime D = m2 + 4, there exist some qj < M2+3/2 and qj E S such 
that (D) = 1 . This completes the proof. a 

The next lemma gives the first 20 convergents for the ratio of the imaginary 
parts of the first two nontrivial zeros in the upper half-plane of 4(s). 

Lemma 3. Let a = 1.487 262 003 298 890 048. Then its expansion in continued 
fraction isa=[1;2, 19,7, 1, 10, 1,20, 1, 1,26, 1, 1,6, 1,3, 1, 1, 1,8, 
3, 1, 2, 1, 25, 1, 1, 7, 5, 1, 3, 1, 2, 2] and its first 20 convergents are 

Ci 3 R3=58 Ck4 =42?9; (X5 =4364, = 5079, Cf7 = 3729' 

a8= 
115999 = 121545 aio 237544 6l = 

6297689 - 
Ct12 

6535233 
77995 , 81724 '1O=159719 ' 1 4234418 -4394137 
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= _ 12832922 a 83532765 96365687 372629826 _ 468995513 
&13 -8628555 a 4 = 56165467 ' &15 = 64794022 6 = 250547533 &7 - 315341555 

841625339 1310620852 - 11326592155 
a18 

- 
565889088 1`9 = 881230643 ' - 7615734232 

The following integral is one of our major analytic tools, which was first used 
in 1917 by Hecke [1] to obtain a Kronecker limit formula for real quadratic 
fields. 

Lemma 4. Define 

(1) c(s) j (ev +e-v)s' Res > O. 

Then c(s) can be continued to a meromorphic function over the s-plane with the 
only singularity s = 0 (a pole of order 1). Besides, for any s we have 

(2) c(s)= F (2) /(2F(s)). 
Proof. For Res > 0 we have 

c(s)l t1S-1(l -t)ls-'dt = -B( s=F r(s) 1(2]F(s)) 

which leads to the desired result. O 

The following lemma is similar to the one used in [9]. Here, however, c(s) is 
used to turn our real quadratic fields into imaginary ones, which can be treated 
by Stark's method. 

Lemma 5. Let D be a square-free integer with h(D) = 1. Define the L-function 

(3) LD(S) = (n) ) (Res >1) 

where (D) denotes the Kronecker symbol. Then, for any s, we have 
(4) 

4C(s)LD(s)C(s) = C(2s)c(e, s) + /D-SC(2S - l)(s - I s) ?RO(s), 

where E = (m+VP)/2 is thefundamental unit of the real quadratic,field Q(V\P), 
In c 

(5) Ro(s)= j Rv(s) dv, 

(6) Rv(s) = , | ( [Y _ 
2 )Y- (Qv (k 5 y) s) dy 

(7) Qv(k, y) =Ak2+Bky+ Cy2 

(8) A = (1 + V/7b)2ev/4 + (1 - VlD)2e`/4, 
B = (1 + vT)ev +(1 -v)ev, C= ev + e-v, 

(9) B2 -4AC =-4D, 
Iln e dv 

(10) c(e, z) =I-ne (ev + ev)z 
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Proof. We only need to prove this for Res > 1. Obviously, f(x, y) - x2 + 
xy - (D - 1)y2/4 is a quadratic form with discriminant D. Let it be the 
integral ideal corresponding to f(x, y) . Then we can take it = [1, wi], where 
wc = (1 + VDP)/2. Some h(D) = 1 , we can easily show that 

(11) 4(s)LD(s)= 2 El 1I'ls, 
AESi/e 

where E' means the summation is taken over all nonzero ideals A, 

(12) A=kwo+r, Al'=ko'+r, 1 (12) cO = (I + -)12 cc' = ( 1-@)12, k, r EZ 

and C(s) denotes the Riemann zeta function. 
By the definition of c(s) we obtain that 

(13) 4;(s)LD(s)c(s) = 2 W K Q)2eV d v 2 ev 
~~+ )A12e-v)s 

dvE X Q (k ) = J Mv(k, r) dv, 
-EmIne Qv (k , r)s -Ine 

where 

(14) Mv(k, r) 1 
2(k, r)5$(O,O0)Qvkrs 

Qv (k, r) is defined in (7), and (9) can be easily verified. 
From Euler's summation formula it follows that 

Mv (k, r)= (2e) r + Qv(k, r)ys M~(k r)=(ev + e-v)s k=1 

k=l r=-oo 

4'(2s) 
0 0 dy 

(15) = 
(ev + e-v)s + ZJ o Qv(k, y)s 

+EjO (Y[i ]2) +y(Qv(ky ) dy. 

A direct calculation gives 

(16) E [? dy / #D-s 4C(2s - 1)r(s - 

k=(16 o] Qv(k, y)s (ev + e-v)-s F(s) 

This completes the proof. 5 

Combining Lemma 5 with our reiteration method leads to the following re- 
sult, which secures the theorem. 

Lemma 6. Let D = m2 + 4 > 10 13 be a square-free integer with h(D) = 1 . Then 
we have 

(17) D > exp(371815978). 
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Proof. Let Bj(u) denote the jth Bernoulli polynomial. We have 

(18) Bl(u) = u - 1 B2(U) = u2-u + 6 

By (2.6) of Rademacher [7] and the substitution t = (2Cy + Bk)/(2vKPk) we 
obtain 

00? B d Cs+l 
(19) 1B(y - [y])d- (Qv(k y)s)dy = Ds+ k2S+1 (Ji(s) + J2(s)), 

where 

(20) JI(s) = 1 J d 2((t2+ 1)-s)dt, 

(21) J2() s jB2(y [Y])24 d2((t2 + )-s) dt. 

We can easily obtain 

(22) J1 (s) - 2(s) 

and 

(23) -8< B2 (Y -[Y] - <8 

Let vj be the ordinate of the jth nontrivial zero in the upper half-plane of 
the Riemann zeta function. In [6] it was shown that 

(24) v, = 14.134 725 141 734 693 790 457 + 10-216, 
(25) v2 = 21.022 039 638 771 554 992 628 + 10-216, (101 < 1). 

Thus we have 

|J (+ +i>) < 
I 0 

|d ((t2+ I)-s)| dt 
(26) <1 3 f33.5065, j1 

6 2 2 +11']<173.8644 j-2. 

From (5), (19), (22) and (26) it follows that 

Ro( + ) ? VF i (2 + 2ivj)c (, - -ivj 24Dl+ivjF (2, + ivi) 42 2 / 
(27) 

&~~~~~aj(2)c (e, -1) 
+ 2) 0 (1011), 

where 

(28) aj3.06,i=1, 
73:8644 j = 2. 

It can be readily shown that 

cQj-+ ivj)= cG -+ivj) - 2IO (d vI 
2 2 ne (ev +(e-v))2+iv4 

(29) r, (I +I i,j2 40 
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From (5) it follows that 

(30) 

R0 ( 
2 

+ ivA = -C(l + 2ivj)c fe, ^ 
+ ivA 

By well-known formulae for the Riemann zeta function and gamma function 

we have 

(31) C(2iVj)r(iuj) = 7r-i+2",C(i _ 
2iVj)T 

(j 
- 

?/,) 
. 

From (27), (30), (29) and (31) it follows that 

(32) 

/^ 
= 

_r(i-i^c(i-2^)+^ 
/l N 

UV r(i + i^)2c(i + 2^) fc fcU V 

where 

(34) 

Ji(^+iv) 
= -'-?"v':::j/t',;-? 

2 
-", 7 = 1,2, 

TC^-2'^r(l + ii/j-)C(2 + 2ii/j)c(e, -f 
- 

a//) 

12Z)r(i + i/i/i)2C(l + 2/^) 

(35) j; (\ + ,?) 

1 

(?)^ a;Zii?M?(^zM 
r(\ + Wj)c(e,-l)d 

5 
/) 

; = i,2(|0|<i). 

(36) 

(37) 

A direct calculation gives 

(\ . \\ f 5.708835 x 10-10, j=\, 

\2 
+ 

Wj)\ >\ 1.413149 xlO-14, j = 2, 

/3 1. \ fexp(-9.6937176), 7 = 1, 

\4 2Wj)\ l exp(-15.0036975), j = 2, 

2.158099 x 10-9, 7 = 1, 

7 = 2, 

,?. ? x, f 2.158099 x 10-y, 
(38) 

lr('+^)l<{5.261146><10-/ 

(39, 
i?^^)i<{i.^: )ili. 

By (36), (37) and the multiplication formula for the gamma function we have 

r(\ 1. \j2 f 5.3843214 x 10"10, j=\, 
(40) 

r(- 
+ 

-n,)| >{O395796xl0_15; j = z 

By [9] we have 
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For D > 1013 we easily have 
(42) 

c (, -2 <3{(1+ 2) +( +) -1 2-3 +(231 1),-3/4 D 3/4 

< 1.33336607D3/4. 

Therefore, for D > 1013 we have 

J(1 i 5 16.9643217D-1/4, J-1, 
(43) +~ ~ ~ lV 20.6914635D-/4, j2, 

(44) IJ* (1 +i)I 5 0.57636882D-"/4, J I1 
J2 2 <11.2924129D-14, j2, 

(45) 7* (1 )I 79.967973D- 1/4, j I1 
J3 2 504.258735D-"/4 J2. 

From (32), (43), (44) and (45) it follows that for D > 1013 we have 

4 2 ( D)iVJ r -iv) (-2v) 

7, 2 1( + ivj)2 4(1 + 2ivj) 

(46) { 97.50866366D-4, j-1, 

(47) 
+ 

I2.462D, j2 (161?< 1). 

Taking the arguments on both sides of (46) and (47), and noticing that D > 
1013, we obtain 

(48) (D/ 2)= 2 { 0.0548331520, j-1, 

(49) nk7) + + 0.2959279686,~ j =2 

where xj are nonnegative integers and 

ai_ 7 - 44argF (I +.iv) -2arg4(1+2ivj) (mod27r), 

0<aj<2t, j=1,2. 

From (48) and (49) it follows that 

(51) X= -x + +a+R*, 

where 

(52) a =+ (a2 - a2) 

and 

(53) IR*l < A ( o(0.054833152) +0.295927968) < 0.0600776857. 

In [9] it is shown that 

(54) V2 = 1.487 262 003 892 890 048 + 10-186, 
V1 
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(55) 1 (1 f 7.418 512 651 985 173 + 2 x 10-130, j=1, 
(56) 7r \2+J) I 13.688 619 111000 235 +2x 10-13, j=2, 
(57) 1 5(1 2iv) -0.108 452 737 083 095 + 10-1'0 (mod 2), j = 1, 
(58) 7r 0.067 103 865 503 910+ 10-106 (mod2), j =2. 

It can be easily seen that 

(59) 2(41+iiVj) 
- 

iVjJ (2 + ij sin ((I - iivji )r / 
- k2 7 ~~~24 2~~ 

from which it follows that 
(60) 

arg (I + i= (arg r (+iv) -vjln2+arg {sin(( - vj 7r)}). 

By (60), (55) and (56) we have 

2 {1 1 - arg IF + _Vj) 
(61) =54.049 889 087 345 757 85 + 2.1 x 10-130, 1-1. 
(62) - 8.800 408 778 867 03 + 2.1 x 10-130, j 2. 

From (50), (57), (58), (61) and (62) we obtain 

(63) aj - 0.558 563 649 737 337 15 + 1.003 x 10106, j = 1. 
(64) 27- 0.632 487 355 629 06 + 1.003 x 10-100, j 2, 
(65) a = 0.198 243 137 -455 44 + 1.76 x 10-100. 

Our next device is the following reiteration. By (48) and D > 1013 we first 
have x, > 61. Then, by using this reiteration, we push x, to a much greater 
value which corresponds to a much greater lower bound for D. 

Let us now prove that 

(66) xi > 84. 

Taking x, = 7 in (51) gives 

(67) 10.410834027250230336+7xl1-180=7V2+a+R*+1.77x 10100. 

By (51) and (67) we have 

(68) X2 J-0=v2(xl-7)-bl+Rl, 
V1 

where 

(69) b= 0.4108, JR, < 0.1201893989. 

Take 

(70) p, = 58, q1 = 39, 

for which we have 

(71) V2 _ PI < 8.2517 x 10-5. 
VI- q1 
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Assume that Q and R (0 < R < ql) are two integers such that 

(72) Q +-= P- (xl - 7). 
q1 q1 

By (68) and (72) we have 

(73) x2-Q-10= (- Pl (xl - 7) + b, + 0.12018939890. 

If xl < 83, by (71) and (73) we have 

(74) {x2 - H - 101 < 76 x 8.2517 x 10-5 + (1 - bi) + 0.121 < 1. 

On the other hand, we have 

(75) blql = (0.4108)(39) = 16.0212. 

Thus, for R f12, 20] we have 

(76) x2- Q - 101 > 0.12766 - 76 x 8.2517 x 10-5 - 0.121 > 0. 

which contradicts (74). 
Furthermore, we easily have 

(77) 3q, -2p = 1, 

from which and (72) it follows that 

(78) xl - 7 + 37R (mod ql). 

For 61 < xl < 83 and R E [12, 20] a direct calculation shows that there is no 
such pair of xl and R satisfying (78). This proves (66). 

Now we prove that 

(79) xi > 92. 

By (66) and (48) we have 

(80) D > 2.07447887 x 1017. 

By (80) and (46), (47) we easily reduce (48) and (49) to 

(81) lnD _ )a f7x + 0.00456894536, j = 1, 
(82) Vn( /0) a + 0.02465805170 2, 
and (73) because 

(83) x2 - Q - 10 =( - P) (xl - 7) + (-- b) + 0.01004591456, 

where we choose 

(84) P2 409, q2= 275. 

We easily have 

(85) V1U2 _ P2 < 1.0724 x 10-5 

(85) ~~~~~VI q2 
and 

(86) 39P2- 58q2 = 1, bIq2 = 112.97. 
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If (79) is false, we should have 

(87) 84 < xl < 91. 

By (83), (85) and (87) we have 

(88) {x2 - Q - 101 < (84)(1.0724 x 10-5) + (1 - b1) + 0.01005 < 1. 

For R f[110, 115] we have 

R 3.03 

(89) -- b > ? >0.010 1818. 
Hence, for R [110, 115] wehave 

{x2-Q- 101 > 0.01101818 - (84)(1.0724 x 10-5) - 0.010046 > 0, 

which contradicts (88). Here we have assumed that Q and R (0 < R < q2) 
are two integers defined by 

(90) Q + - = -2 (xl -7). 
q2 q2 

By (86) and (90) we have 

(91) xl - 7 + 39R (mod q2). 

A direct calculation shows that there is no such pair of xl and R, 84 < xl < 
91, R E [110, 115]. This proves (79). 

By (79) we have 

(92) 2 10.00187639230, j= 1, 
(93) vj ln(D/ z2) = aj + 27xj + 

0.01012666470, = 2. 

By taking 

(94) p3 = 467, q3 = 314 

and defining Q and R (0 < R < q3) by 

(95) Q +-= P3 (xl - 7), 

we have 

(96) x2-Q-10- -(-- (x - 7) + (R b) + 0.00414574820. 

This easily leads to 

(97) xi > 289. 

By (97) and taking 

(98) P4 =468995513, q4= 315341555, 

we are led to 

(99) xl > 315341562. 

By (99) and taking 

(100) P5= 1310620852, q5 = 881230643, 
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we are led to 

(101) xl > 836441460. 

By (101) we easily have 

D > exp(371815978), 

which is the desired conclusion. 5 
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